

۳- مشخصات فنی

■ عملکرد کلی، دامنه کاربردها و استفاده ها

گیربکس خورشیدی برای انتقال توان در داخل ماشین های در حال کار طراحی شده است. این گیربکس ها می توانند به صورت مستقیم یا غیرمستقیم به موتور الکتریکی یا هیدرولیکی متصل شوند. گیربکس خورشیدی برای کاربردهای بسیار مختلف صنعتی به کار رفته که برخی از کاربردهای آنها عبارتند از: صنایع مکانیک، صنایع شیمیایی و پلاستیک، صنایع غذایی، ساخت و ساز و ساختمان سازی، صنایع معدن، جنگلداری و کشاورزی، حمل و نقل و باربری، بخش دریایی و ژنراتورهای بادی برای تولید انرژی. هشدار: از گیربکس خورشیدی فقط در پروژه هایی که قبل از انتخاب محصول برآورد شده است استفاده شود. استفاده نادرست از آن باعث ایجاد خطرات ایمنی و سلامتی برای دیگران می شود. مجدداً تاکید می گردد این محصول جهت مصارف صنعتی طراحی شده است.

■ گشتاور خروجی نامی (T_{2n}) (Nm)

این مقدار گشتاوری است که مخصوص هر گیربکس کاهنده سرعت می باشد و برای انتخاب کلی اندازه، مناسب است.

■ گشتاور خروجی (T_2) (Nm)

مقدار گشتاور قابل انتقال در عملیات پیوسته و یک شکل با ضریب سرویس $f = 1$ برای مقدار ضریب مدت f است. مقادیر T_2 که برخی ضرایب مدت f محاسبه شده، در جدول داده های فنی در ابتدای این بخش با درنظر گرفتن اندازه گیربکس کاهنده سرعت ارائه شده است. گشتاور T_2 محدود به قدرت خمی یا قدرت سطح دندانه چرخ دنده است.

3- Technical Specifications

■ General function and ranges of applications and uses Solar Gearbox has been designed to transfer potential inside operating machines. These gearboxes can attach directly or indirectly to electrical or hydraulic motor. Solar gearbox has been used for many different industrial applications, some of which are as follows: Mechanical industries, chemical industries and plastics, dietary industries, construction, mining industries, forest ring and agriculture transportation and load carrying. Marine section and pneumatic generators for producing electrical energy.

Warning: Solar gearbox is used just for those projects which were assessed before selecting the product. Incorrect use of solar gearbox causes health and safety hazards for others. It is again emphasized that this product has been designed for industrial uses.

■ Nominal outlet moment T_{2n} (Nm)

This is the amount of moment which is specific for any reducing gearbox and suitable for general selection of size.

■ Outlet moment T_2 (Nm)

The amount of transferrable moment is for continuous operation and one form of service coefficient $f=1$ for the amount in f_n term. T_2 amount which calculated for some term coefficients f_n , have been offered in technical data tables in first part of this section by considering the size of reducing speed gearbox. Moment T_2 is limited to bending power or surface power of gears' teeth.

■ حداکثر گشتاور خروجی ($T_{2\max}$ Nm)

حداکثر گشتاوری است که در خروجی گیربکس برای مدت زمان کوتاه یا برای پیک های موقت به کار می رود، بدون اینکه آسیب شدید به اجزای تحت تنش وارد کند. در مورد بار شعاعی، حداکثر گشتاور به کار رفته کاهش می یابد.

■ گشتاور خروجی لازم (T_{2r} Nm)

گشتاور خروجی است که در گیربکس کاهنده سرعت براساس داده های عملیاتی به کار می رود.

■ گشتاور خروجی متصل (T_{2c} Nm)

بر مبنای گشتاور لازم و ضریب سرویس محاسبه می شود و مقدار مبنایی است که طبق آن گیربکس کاهنده مناسب برای کاربرد موردنظر انتخاب می شود.

■ سرعت ورودی (n_1 min⁻¹)

سرعت موتوری است که متصل به ورودی گیربکس کاهنده می باشد.

■ سرعت خروجی (n_2 min⁻¹)

سرعت محور خروجی گیربکس کاهنده است که تابع سرعت ورودی n_1 و نسبت کاهش واقعی آ می باشد.

■ نسبت کاهش آ

$$i = \frac{n_1}{n_2}$$

نسبت واقعی بین سرعت ورودی n_1 و سرعت خروجی n_2 را نشان می دهد.

نسبت های کاهش موجود در جدول داده های فنی برای هر اندازه ارائه شده است. سایر نسبت های کاهش را می توان بدست آورد.

■ Maximum outlet moment $T_{2\max}$ (Nm)

It is the maximum moment which is applied in gearbox outlet for short time for temporary peaks, without imposing intense damage to under-tension components.

Regarding radial load, the maximum applied moment is reduced

■ Necessary outlet moment T_{2r} (Nm)

It is outlet moment which is applied in speed reducing gearbox based on operational data.

■ Connected outlet moment T_{2c} (Nm)

It is calculated based on necessary moment and service coefficient and is the basic amount according to which proper reducing gearbox is selected for intended application.

■ Inlet speed n_1 (min⁻¹)

It is motor speed which is connected to reducing gearbox inlet.

■ outlet speed n_2 (min⁻¹)

It is outlet axis speed of reducing gearbox which is a function of inlet speed n_1 and the proportion of actual reduction i

■ Reduction Proportion i

It shows the actual proportion between inlet speed n_1 and outlet speed n_2 .

$$i = \frac{n_1}{n_2}$$

Existing reducing proportions have been offered in technical data table for any sizes. Other reducing proportions can be obtained.

حداکثر سرعت ورودی (min^{-1}) $n_{1\text{max}}$

حداکثر سرعت ورودی مجاز برای مدت زمان کوتاه یا موقت را نشان می‌دهد. سرعت ورودی گیربکس محدود به سرعت محیطی چرخ دنده‌ها با بلبرینگ و درزبند است.

$$f_{h,1} = n_1 \cdot h_r \quad f_{h,2} = n_2 \cdot h_r$$

ضریب مدت ورودی/خروجی $f_{h,1}, f_{h,2}$

حاصل سرعت ورودی/خروجی برای مدت موردنظر است.

توان ورودی P_1 (kW)

توان به کار رفته در گیربکس با اتصال مستقیم یا غیرمستقیم به موتور (با قطعات انتقال اضافی) است.

توان خروجی P_2 (kW)

توان لازم برای کاربر متصل به خروجی گیربکس کاهنده است. می‌توان آن را به صورت زیر محاسبه کرد:

■ بازده ۱

$$\eta = \frac{P_2}{P_1}$$

ضریب بدون بعد است که با نسبت بین توان خروجی P_2 و توان ورودی P_1 بدست می‌آید.

مقدار بازده یک مرحله کاهش میانگین سرعت و شرایط گشتاور برابر 0.975 است.

این مقدار در صورتی کاهش می‌یابد که: سرعت افزایش یابد، گشتاور انتقالی کاهش یابد، دمای محیط افزایش یابد. به عنوان یک قاعده، مراحل کلیدی با مقادیر کمتر بازده مشخص می‌شوند.

■ ضریب اطمینان f_s

ضریب تکثیری گشتاور لازم در خروجی گیربکس است و نوع کار، فرکانس شروع و تعداد ساعت عملیات در روز را درنظر می‌گیرد. بسته به ماشینی که گیربکس سرعت به آن وصل می‌شود، نوع سرویس (یکسان، متوسط یا سنگین) در جدول طبقه‌بندی کاربرد یافت می‌شود. می‌توانید ضریب اطمینان را از جدول مربوطه پیدا کنید.

Maximum inlet speed (min^{-1}) $n_{1\text{max}}$

It shows maximum permissible inlet speed for short time temporary duration. Gearbox inlet speed is limited to circumference speeds of gear with ball bearings and blanks

Inlet/Output term coefficient $f_{n1 \cdot n2}$

$$f_{h,1} = n_1 \cdot h_r \quad f_{h,2} = n_2 \cdot h_r$$

■ It is the result of inlet/outlet speed for intended duration

Inlet potential (Kw) P_1

It is the potential applied in gearbox with direct or indirect connection to motor (with extra .transferring parts

Outlet potential (Kw) P_2

It is necessary potential for connecting to reducing gearbox outlet. It can be calculated by the following formula

Formula

Efficiency η

$$\eta = \frac{P_2}{P_1}$$

Coefficient is without any dimension obtained by the proportion of outlet potential P_2 and inlet potential P_1

The amount of efficiency of one reducing step of the speed average and amount condition is equal to 0.975. This amount is reduced if the speed is increased and transferring .moment is reduced and environment temperature is increased

.As a rule, key steps are characterized by lower efficiency amount

Service coefficient f_s

Multiplicative coefficient is the necessary moment in gearbox outlet, and considers the kind of work, frequency, start and the number of hours of operation in day. Kind of service .(equal, medium or heavy) is found in application category table

You can find service coefficient from relevant table

Compressors		کمپرسورها، فن ها	
Axial and radial compressors	U	کمپرسورهای محوری و شعاعی	
Cooling tower fans	M	فن های برج خنک کننده	
Induced draft fans	M	فن های مکش القایی	
Rotating piston compressors	M	کمپرسورهای پیستون چرخشی	
Turbo compressors	U	کمپرسورهای توربی	
Chemical Industry		صنایع شیمیایی	
Stirrers (liquid materials)	U	هم زن ها (مواد مایع)	
Agitators (semi-liquid materials)	M	هم زن ها (مواد نیمه مایع)	
Centrifugal machines (heavy)	M	ماشین های سانتریفیوژ (سنگین)	
Centrifugal machines (light)	U	ماشین های سانتریفیوژ (سبک)	
Cooling drums	M	درام خنک کننده	
Drying drums	M	درام خشک کننده	
Mixers	M	مخلوط کن ها	
Compressors		کمپرسورها	
Piston compressors	H	کمپرسورهای پیستونی	
Turbo compressors	M	کمپرسورهای توربی	
Conveyors		نقاله ها	
Slat conveyor	M	نوار نقاله لبه دار	
Pocket conveyor belt	M	بالابرهاي متعادل	
Conveyor belt (voluminous material)	M	نوار نقاله (ماده فله ای)	
Conveyors (goods in pieces)	H	نوار نقاله (کالاهای به صورت قطعه ای)	
Bucket conveyor for flours	U	نوار نقاله سطی برای آردها	
Chain conveyor	M	نوارنقاله زنجیری	
Circular conveyor	H	بالابرها	
Inclined hoist	H	بالابر شبیب دار	
Steel conveyor belt	M	نوار نقاله فولادی	
Lifts for people	M	آسانسور برای افراد	
Screw conveyors	M	نوار نقاله پیچی	
Concave belt conveyor	M	نوار نقاله متفور	
Winch conveyor	M	نوار نقاله دوار	
Cranes		جرثقیل ها	
Mechanism of the drilling arm	M	مکانیزم بازوی دریل کننده	
Hoist mechanism	U	مکانیزم بالابر	
Rotating mechanism	M	مکانیزم چرخشی	
Translation mechanism	H	مکانیزم تبدیل	
Dredges		ماشین لایروبی	
Bucket conveyors	H	نوار نقاله سطی	

Dredges		آشین لایروبیم	
Bucket wheels	H	چرخ های سطی	
Tool-holding heads	H	سر نگهدارنده ابزار	
Winches for maneuvers	M	کابل جمع کن برای مانور دادن	
Pumps	M	پمپ ها	
Rotating mechanism	M	مکانیزم چرخشی	
Translation mechanism (tracked vehicle)	H	مکانیزم تبدیل (وسیله نقلیه)	
Translation mechanism (rails)	M	مکانیزم تبدیل (ریل ها)	
Machines for filling		ماشین آلات صنایع غذایی	
bottles and containers	U	ماشین های پر کردن بطری ها و ظروف	
Cane crushers	M	خردکننده نیشکر	
Knives for cane	H	نیشکر خرد کن	
Cane mill	H	آسیای نیشکر	
Kneading machine	H	مخزن (متبلور کننده)	
Tanks for macerating (crystallizers)	H	استوانه خشک کن	
Packing machinery	U	ماشین پسته بندی	
Cutters for sugar beet	M	کاترهای چند رقند	
Machines for washing sugar beet	M	ماشین های شستشوی چند رقند	
Building machinery		ماشین آلات ساختمان سازی	
Concrete mixers	M	مخلوط کننده های بتن	
Hoists	M	بالابرها	
Machinery for road construction	M	ماشین آلات ساخت جاده	
Generators and transformers		ژنراتورها و ترانسفورماتورها	
Frequency transformers	H	ترانسفورماتورهای فرکانس	
Generators	H	ژنراتورها	
Generators for welding machine	H	ژنراتورهای ماشین جوشکاری	
Laundries		خشک شویی ها	
Inverters	M	بدل ها	
Washing machines	M	ماشین های لباسشویی	
Ironing machines	M	ماشین های اتوکشی	
Metal rollers		غلنک های فلزی	
Shears for rolling mills	H	ماشین برش آسیاب نورد	
Chain drives	M	درایوهای زنجیری	
Cold rolling mills	H	آسیاب نورد سرد	
Plants for continuous melting	H	طرح هایی برای نورد مستمر	
Cooling blocks	M	بلوک های خنک کننده	
Machines for working metal		قیچی برای جدا کردن	
Counter shafts, shafts in line	H	آسیاب های غلتکی برای صفحات متوسط و سنگین	

Metal Rollers		غلاتک های فلزی	
mixer	M	مخلوط کن	
Pumps		پمپ ها	
(Centrifugal pump (light liquids	U	پمپ سانتریفیوز (مایعات سبک)	
(Centrifugal pump (viscose liquids	H	پمپ سانتریفیوز (مایعات ویسکوز)	
Piston pumps	H	پمپ های پیستون	
Pushbutton pump	H	پمپ کلید فشاری	
Pressure pump	H	پمپ فشاری	
Machinery for rubber		ماشین آلات لاستیک سازی	
Rolling presses	M	پرس های غلتکی	
Extruders	H	اکسٹرودرها	
Mixers	M	مخلوط کن	
Kneading machines	H	ماشین های ورزدادن	
Rolling mills	H	آسیاب غلتکی	
Machines for working		ماشین آلات کار با سنگ و خاک	
stone and clay Hammer mills	H	آسیاب های چکشی	
Rolling mills for refining	H	آسیاب غلتکی برای تصفیه	
Switch	H	سوئیچ	
Presses for bricks	H	پرس های آجر	
Rotating kiln	H	کوره چرخشی	
Tube rolling mills	H	آسیاب غلتکی تیوبی	
Textile machines		ماشین آلات نساجی	
Batchers	M	ماشین پارچه پیچ	
Looms for weaving	M	ماشین بافندگی	
Machine for printing and dyeing	M	ماشین های چاپ و رنگ زنی	
Tank for tanning	M	مخزن رنگ	
Willows	M	ماشین پنبه پاک کنی	
Water treatments		تصفیه آب	
Aerators	M	هوایکرها	
Screw pump	M	پمپ پیچی	
Machines for working wood		ماشین های کار با چوب	
Bark-peeling machine	H	ماشینهای کندن پوست تنہ درخت	
Planing machines	M	ماشینهای تراشکاری	
Frame for saws	H	چارچوب اره ها	
Machines for working wood	U	ماشین های کار با چوب	

سنگین H			متوسط M			یکسان U			f_s
8+24	1+8	1>	8+24	1+8	1>	8+24	1+8	1>	
1.7	1.3	1	1.3	1.1	0.9	1.1	0.9	0.7	6>
2	1.7	1.4	1.6	1.4	1.1	1.4	1.2	0.9	6+60
2.5	2.1	1.7	2	1.7	1.4	1.7	1.5	1.2	60<

■ توان گرمایی (P_t kW)

توان گرمایی توانی است که در ورودی گیربکس کاهنده سرعت به کار می رود که به صورت پیوسته کار می کند و دمای روغن داخلی چرخ دنده را در ۹۰ درجه سانتی گراد در شرایط آزمایشی زیر تثبیت می کند:

• سرعت ورودی: 1000-min⁻¹

• روغن کاری پاشش روغن

• چرخ دنده در موقعیت افقی که در معرض جریان مجدد هوا نیست.

• مقدار روغن مناسب با نصف علامت وضعیت پر باشد.

• روغن ISO VG 150

• دمای محیط ۲۰ درجه سانتی گراد.

مقدار توان گرمایی هر گیربکس در جدول داده های فنی مربوطه ارائه شده است. در گیربکس ها با خروجی

■ Thermal potential P_t (KW)

Thermal potential is the applied in reducing gearbox inlet working continuously and establishes gear inlet oil temperature at 90oC in following experimental conditions.

• Inlet speed: 1000-min⁻¹

• Lubrications: spraying oil

• Gear is in vertical direction which is not subject to air current

• The amount of oil must be half the full oil mark.

• Oil ISO VE150

• Environment temperature: 20oC

The amount of thermal potential of any gearbox has been given in relevant technical data tables.

UC، توان گرمایی تا ۲۰ درصد افزایش می یابد. برای کاهش دمای داخل گیربکس پیشنهاد می گردد از رادیاتورهای خنک کننده روغن استفاده شود
هشدار: وصل کردن گیربکس داخل بخش های کوچک باعث کاهش قابل توجه ظرفیت پروواکنش توان گرمایی می شود.

■ بار شعاعی ورودی/خروجی $F_{r,2}, F_{r,1}$
منحنی های بار شعاعی مجاز $F_{r,1}$ و $F_{r,2}$ به صورت تابعش (فاصله از مرجع مناسب) با ورودی های سریع (سبک، متوسط و سنگین) و با پشتیبانی خروجی بدست آمده که اجازه وجود بار شعاعی را می دهد. مقدار بار شعاعی مجاز به نوع بلبرینگ های محاسبه شده بر مبنای استاندارد ISO 281 اشاره می کند و به ترتیب برابر است با:

- $10^7 n_1 \cdot h$ برای محورهای ورودی
- $10^5 n_2 \cdot h$ برای محورهای خروجی

هشدار: برای حمایت های خروجی با هزارخار یا هالو، منحنی های بار شعاعی مجاز ارائه نشده اند چون معمولا مناسب بارهای شعاعی حمایت کننده نیستند اما برای کاربردهایی که در آن بارهای شعاعی پیش بینی می شوند، مناسب بودن این حمایت های خروجی و عمر بلبرینگ ارزیابی می شود. برای این کار با سرویس اصفهان دور متفاہر تماس بگیرید.

■ شرایط محیطی و محدوده های استفاده

عملیات دمای محیطی توصیه شده برای گیربکس بین ۲۰ - ۴۰ درجه سانتی گراد متفاہر است. شرایط مختلفی برای استفاده وجود دارد که معیارهای طراحی خاصی را در نظر می گیرد که باید به صورت اختصاصی با سرویس

In gearbox with UC outlet, thermal potential increases up to 20 percent. It is suggested that . oil cooling radiators are used to reduce. Temperature inside gearbox

Warning: connecting gearbox inside small sections causes considerable reduction of reaction . capacity of thermal potential

■ Inlet/outlet radial load $F_{r,2}, F_{r,1}$

Permissible radial load curves, $F_{r,1}$ and $F_{r,2}$ are obtained as a function (distance from proper reference) with rapid inlets (light, medium and heavy) and with outlet support which permits arrival of radial load. The amount of permissible radial (load refers to ball bearings calculated based on standard ISO281 and equals to followings respectively.

- $(10^7 n_1 \cdot h)$ for inlet axes
- $(10^5 n_2 \cdot h)$ for outlet axes

Warning: for outlet supports with (splined shaft) or halo permissible radial load curves have not been presented because. usually they are not appropriate for supporting radial loads but for those applications for which radial loads are redirected, the suitability of these outlet supports and ball bearing life are evaluated. For this type of job call ESFAHAN DOR MOTOGHAYER Service

■ Environmental conditions and limitation of use

Recommended environmental temperature for proper operations of the gearbox is variable between 20 to 40oC. There are different conditions for use which consider special planning criteria that must be agreed upon exclusively with technical service for them

فني برای آن به توافق رسید. عملیات در دمای بالاتر از ۴۰ درجه سانتیگراد ممنوع است مگر اینکه در توانی زیر توان گرمایی مجاز کار کنید و تست های عملیاتی مناسب را اجرا نمایید.

■ انتخاب گیربکس سرعت

برای انتخاب مناسب ترین گیربکس سرعت برای کاربرد مورد نظر دانستن موارد زیر الزامی است:

- سرعت ورودی ($n_1(\text{min}^{-1})$)
- سرعت لازم خروجی ($n^{2r}(\text{min}^{-1})$)
- گشتاور لازم خروجی ($T_{2r}(\text{Nm})$)
- مدت زمان لازم ($h_r(h)$)

ضریب سرویس f_s که بر مبنای نوع کاربرد و شرایط استفاده محاسبه شده است.

با این داده ها می توان نسبت کاهش مورد نیاز را تعیین کرد.

$$i_r = \frac{n_1}{n^{2r}}$$

گشتاور خروجی اصلاح شده:

$$T_{2c} = T_{2r} \cdot f_s$$

و ضریب مدت زمان:

$$f_{h,2} = n_{2r} \cdot h_r$$

Operations are forbidden in temperatures higher than 40°C unless you operate in less than permissible thermal capacity and perform proper operational tests.

■ Selecting speed gearbox

It is necessary to know the followings for selecting the most suitable speed gearbox for intended application:

- Inlet speed $n_1(\text{min}^{-1})$
- Outlet necessary speed $n^{2r}(\text{min}^{-1})$
- Outlet necessary moment $T_{2r}(\text{Nm})$
- Necessary duration $h_r(h)$
- Service coefficient f_s which has been calculated based type of application and use conditions.

$$i_r = \frac{n_1}{n^{2r}}$$

Necessary reduction proportion can be determined by these data (formula)

Amended outlet moment (formula)

And duration coefficient (formula)

$$T_{2c} = T_{2r} \cdot f_s$$

$$f_{h,2} = n_{2r} \cdot h_r$$

اندازه گیربکس را از جدول گشتاور نامی انتخاب کنید طوری که گشتاور نامی بزرگتر از T_{2c} باشد. سپس از جدول داده های فنی (در ابتدای بخش اندازه) گیربکس کاهنده ای با نسبت کاهنده ای نزدیک به مقدار لازم آنرا انتخاب کنید تا مطمئن شوید که گشتاور خروجی قابل انتقال T_2 بیشتر از T_{2c} است که در ستون مربوط به مقدار n_{2xh} بالاتر قرار گرفته یا مانند ضریب مدت $f_{h,2}$ محاسبه شده است.

مثال

می خواهید گیربکس کاهنده، سرعت خطی را انتخاب کنید که در شرایط زیر کار می کند:

• سرعت ورودی $n_{-1} = 1500 \text{ min}^{-1}$

• سرعت خروجی لازم $n_{2r} = 15 \text{ min}^{-1}$

• گشتاور خروجی لازم $T_{2r} = 3500 \text{ Nm}$

• مدت زمان لازم $h_r = 5000 \text{ h}$

• ضریب سرویس $f_s = 1.3$

نسبت کاهنده ای لازم به صورت زیر بدست می آید:

$$i_r = \frac{n_1}{n_{2r}} = \frac{1500}{15} = 100;$$

$$T_{2c} = T_{2r} \cdot f_s = 3500 \cdot 1.3 = 4500 \text{ Nm}$$

در صورتی که گشتاور اصلاح شده به صورت زیر است:

$$f_{h,2} = n_{2r} \cdot h_r = 15 \cdot 5000 = 75000$$

و ضریب مدت زمان برابر است با:

Select the size of gearbox from nominal table so that it is more than T_{2c} . then select a reducing gearbox with reducing proportion of i_r near to necessary amount of n_{2xh} from technical data table (at the first part of size) so that you become sure of T_2 transferrable outlet moment is more than T_{2c} that has been located higher in the column related to the amount or calculated like term coefficient f_{n2} .

Example

Suppose you want to select a linear speed reducing gear which is working under following conditions:

Inlet speed: $n_{-1} = 1500 \text{ min}^{-1}$

Necessary outlet speed: $n_{2r} = 15 \text{ min}^{-1}$

Necessary outlet moment: $T_{2r} = 3500 \text{ Nm}$

Necessary duration: $h_r = 5000 \text{ h}$

Service coefficient: $f_s = 1.3$

Necessary reducing proportion is obtained like following:

$$i_r = \frac{n_1}{n_{2r}} = \frac{1500}{15} = 100;$$

Is the amended moment is like following:

$$T_{2c} = T_{2r} \cdot f_s = 3500 \cdot 1.3 = 4500 \text{ Nm}$$

And the time/term coefficient equals to

$$f_{h,2} = n_{2r} \cdot h_r = 15 \cdot 5000 = 75000$$

از جدول گشتاور طوری، اندازه گیربکس را انتخاب کنید که مقدار گشتاور نامی T_{2n} بیشتر از T_{2c} دارد. در این مورد اندازه مناسب برابر SH510 است. در جدول داده های فنی برای اندازه SH510، گیربکس کاهنده خطی سه مرحله ای (L3) با نسبت ۹۷/۹۲ وجود دارد که نزدیک به چیزی است که می خواهید. در ستون $n_2 \cdot h = 100000 < f_{h,2}$ مربوط به می توانید مقدار گشتاور قابل کاربرد T_2 را قرائت کنید که 4950 Nm است.

510

L	i 1/...	T2 [Nm]						n1 max [min]	T2 max [Nm]	pt [Kw]			
		n2*h											
		10000 (10)4	25000 (2.5*10)4	50000 (5*10)4	100000 (10)5	500000 (5*10)5	1000000 (10)6						
L3	51.33	5540	5220	5070	4950	4200	3400	6500	9				
	55.76	5540	5220	5070	4950	4200	3400						
	60.38	5540	5220	5070	4950	4200	3400						
	62.66	5540	5220	5070	4950	4200	3400						
	65.60	6270	5800	5270	4630	4130	3360						
	71.04	6270	5800	5270	4630	4130	3360						
	73.71	5540	5220	5070	4950	4200	3400						
	83.23	5540	5220	5070	4950	4200	3400						
	86.72	6270	5800	5270	4630	4130	3360						
	92.14	5540	5220	5070	4950	4200	3400						
	97.92	5540	5220	5070	4950	4200	3400						
	106.88	5540	5220	5070	4950	4200	3400						
	108.40	6270	5800	5270	4630	4130	3360						
	115.20	6270	5800	5270	4630	4130	3360						

چون این مقدار بیشتر از T_{2C} است گیربکس انتخابی برای کار در شرایط لازم مناسب است.

Select from moment table the gearbox size so that the amount of nominal moment T_{2N} is more than T_{2C} . in this case, the proper size is equal to SH510. In technical data table for the size of SH510, there is a three step (L3) linear reducing gearbox with the proportion of 97/92, that is near to what you want.

In the column related to $n_2 \cdot h = 100000 < f_{h,2}$, you can read the application moment T_2 that is 4950 Nm

■ بررسی ها

وقتی گیربکس براساس پارامترهای عملیاتی انتخاب شد ، توصیه می شود بررسی های زیر را انجام دهید تا سازگاری گیربکس با کاربرد شما تضمین گردد.

■ بررسی حداکثر گشتاور

حداکثر گشتاور مجاز در زمان استارت یا پیک موقتی نباید بیش از $T_{2\max}$ باشد که در ستون مربوطه در جدول داده های فنی برای گیربکس کاهنده مورد نظر ارائه شده است . وقتی شرایط بار شامل استارت زیاد باشد، یا معکوس شدن جهت یا دوره های طولانی عملیات در گشتاور نزدیک به $T_{2\max}$ روی دهد، توصیه می شود که گیربکس بزرگتر را انتخاب کنید.

هشدار: در مورد بار شعاعی، حداکثر گشتاور قبل کاربرد کاهش می یابد. در این موارد با سرویس فنی اصفهان دور متغیر تماس بگیرید تا مناسب بودن حمایت از خروجی را تایید کند.

■ Investigations

When gearbox has been selected according to operational parameters, it is recommended that you perform following investigations so that the compatibility of gearbox with your application is guaranteed.

■ Investigating maximum moment

Maximum permissible moment at start or temporary peak must not be more than $T_{2\max}$ which has been offered in technical data table for intended reducing gearbox. When loading conditions include many starts, or direction reversal or long term operations in the moment near $T_{2\max}$, it is recommended that you select bigger gearbox.

Warning: Regarding radial load, maximum applicable moment is reduced. In this connection, make telephone call to ESFAHAN DOR MOTOGHAYER technical service to confirm the suitability of support of outlet.

۳-۵ بررسی توان گرمایی

اگر توان منتقل شده با گیربکس یعنی توان لازم در ورودی P_{r1} بالاتر از توان گرمای P_t باشد، نیاز به سیستم خنک سازی کمکی می باشد. چون مقدار توان گرمایی گیربکس با فرض $n=1000\text{min}^{-1}$ و $t_a=20^\circ\text{C}$ بحسب $t_a = 0/9$ می آید، وقتی شرایط عملیاتی واقعی از این شرایط انحراف پیدا کند، مقدار P_t باید با استفاده از ضرایب K_t ، ضریب دما و K_v و ضریب سرعت اصلاح شود که از جداول زیر به دست آید:

t_a				دقایق/ساعت عملیات		K_t
40°C	30°C	20°C	10°C	% 100	60	کار مستمر
1/45	1/15	1	0/9	% 100	60	کار مستمر
1/25	1	0/9	0/8	% 80	48	کار متناوب
1/1	0/9	0/75	0/7	% 60	36	کار متناوب
0/95	0/8	0/65	0/6	% 40	24	
0/85	0/7	0/6	0/5	% 20	12	

■ Investigating thermal potential

If transferred potential with gearbox namely necessary potential in P_{r1} inlet is higher than thermal potential of P_t , there is a need for auxiliary cooling system, because gearbox thermal potential is obtained with the assumption of $n=1000\text{min}^{-1}$ and $t_a=20^\circ\text{C}$. When actual operation conditions deviate from above conditions, P_t amount must be amended which are obtained by the following tables.

K_t	minutes operating/hour	t_a				
		10°C	20°C	30°C	40°C	
Continuous duty	60	% 100	0/9	1	1/15	1/45
Intermittent duty	48	% 80	0/8	0/9	1	1/25
	36	% 60	0/7	0/75	0/9	1/1
	24	% 40	0/6	0/65	0/8	0/95
	12	% 20	0/5	0/6	0/7	0/85

توان گرمایی اصلاح شده P'_t با فرمول زیر بدست می آید:

$$P'_t = \frac{P_t \cdot K_v}{K_t}$$

اگر نتیجه آن $P_{r1} > P'_t$ باشد، سیستم خنک کننده کمکی باید نصب شود تا توان گرمایی اضافی از بین برود که با فرمول زیر به دست می آید:

$$P_s = \frac{(P_{r1} - P'_t) \cdot C_{rt}}{860}$$

که C_{rt} ضریبی است که در جدول زیر یافت می شود و مبنی بر پیکربندی چرخ دنده کاهنده و نوع پر کردن است (در فصل روغن کاری نشان داده می شود).

$n_1(\text{min}^{-1})$	K_v
500	1.08
750	1.04
1000	1.00
1250	0.95
1500	0.89
1750	0.82
2000	0.75
2250	0.66
2500	0.59
2750	0.54
3000	0.48

Amended thermal efficiency P_t is obtained nby following formula:

$$P'_t = \frac{P_t \cdot K_v}{K_t}$$

If its result is $P_{r1} > P'_t$ auxiliary cooling system must be installed so that extra thermal potential is removed which is obtained by following formula

$$P_s = \frac{(P_{r1} - P'_t) \cdot C_{rt}}{860}$$

That C_{rt} is a coefficnt found in following table and is based on reducing gear configuration and the kind of its filling (it will be shown in lubrication chapter)

C_{rt}	وضعیت نیمه پر	وضعیت پر
SH...L1	17	22
SH...L2	34	42
SH...L3	50	63
SH...L4	66	83

مقدار جریان روغن به لیتر در دقیقه برای رها شدن از توان P_s به صورت زیر بدست می آید:

$$q = \frac{(P_{r1} - P'_t) \cdot C_{rt} \cdot 0.07}{t_R - t_s}$$

که t_s و t_R به ترتیب دمای عملیاتی گیربکس کاهنده (یعنی دمای روغن داخل گیربکس کاهنده) و دمای روغنی است که از مبادله کننده خارج می شود.

The amount of oil flow in liter per minute to be relaxed from P_s potential is obtained as follows:

$$q = \frac{(P_{r1} - P'_t) \cdot C_{rt} \cdot 0.07}{t_R - t_s}$$

That T_R and T_s are operational temperature of reducing gear (namely the temperature inside reducing gear) and oil temperature exists from exchanger respectively.

C_{rt}	Filled half way	Filled to the top
SH...L1	17	22
SH...L2	34	42
SH...L3	50	63
SH...L4	66	83

مثال: گیربکس کاهنده SH1010 در شرایط زیر کار می کند:

- سرعت ورودی $n_1 = 1500 \text{ min}^{-1}$
- توان لازم در ورودی $P_{r1} = 30 \text{ kW}$
- تا نصف پرشده
- دمای محیط $t_a = 30^\circ \text{C}$
- 24 دقیقه کار در هر ساعت

مقدار توان گرمایی $P_t = 17 \text{ kW}$ گیربکس کاهنده سرعت در جدول گیربکس کاهنده SH1010 دیده می شود و با وارد کردن ضرایب K_t و K_v بدست آمده از جداول مربوطه اصلاح می شود.

$$P'_{t1} = \frac{P_t \cdot K_v}{K_t} = \frac{17.0/89}{0/80} = 18/9 \text{ kW}$$

چون توان لازم بیشتر از توان گرمایی است، گیربکس کاهنده نمی تواند خنک شود و سیستم خنک کننده کمکی باید نصب شود تا از توان معادل رها شود که برابر است با:

$$P_s = \frac{(P_{r1} - P'_{t1}) \cdot C_{rt}}{860} = \frac{(30-18/9) \cdot 50}{860} = 0.64 \text{ kW}$$

که مقدار C_{rt} از جدول مربوط به گیربکس کاهنده L3 بدست می آید.

Example: Reducing gear SH1010 works in following conditions:

- Inlet speed $n_1 = 1500 \text{ min}^{-1}$
- Necessary efficiency inlet $P_{r1} = 30 \text{ Kw}$
- Environment temperature: $t_a = 30^\circ \text{C}$
- 24 minutes work in any hour

The amount of thermal efficiency $P_t = 17 \text{ Kw}$ of speed reducing gearbox is seen in SH1010 reducing gearbox table and amended by entering coefficients K_t and K_v obtained from relevant tables

$$P'_{t1} = \frac{P_t \cdot K_v}{K_t} = \frac{17.0/89}{0/80} = 18/9 \text{ kW}$$

Since necessary efficiency is more than thermal one, reducing gearbox cannot be cooled and auxiliary cooling system must be installed to be relieved of equivalent efficiency which is equal to

$$P_s = \frac{(P_{r1} - P'_{t1}) \cdot C_{rt}}{860} = \frac{(30-18/9) \cdot 50}{860} = 0.64 \text{ kW}$$

That the amount of C_{rt} is obtained from reducing gear L3 using

با استفاده از سیستم خنک کننده با گردش مجدد جریان و با فرض اینکه دمای روغنی که وارد مبادله کننده می شود $t_R = 90^\circ\text{C}$ و در زمان ترک مبادله کننده دمای آن $t_s = 65^\circ\text{C}$ باشد، لازم است چنین توانی را کنار گذاشته که برابر است با:

$$q = \frac{(Pr_1 - P't) \times C_{rt} \times 0.07}{t_R - t_s} = \frac{(30 - 18.9) \times 50 \times 0.07}{90 - 65} = 1.6 \text{ l/min}$$

■ روغن کاری

دلایل استفاده از روغن در داخل گیربکس

- کاهش اصطکاک بین قطعات، افزایش بازده آنها.
- کاهش گرما و انتقال آن از قطعات متحرک به محفظه
- حفاظت از سطوح در برابر زنگ زدن
- کاهش صدا

در گیربکس خورشیدی باید از روغن دنده صنعتی استفاده کرد که خصوصیت تحمل فشار و انتقال سریع حرارت از داخل به بیرون را داشته و دارای مواد افزودنی EP باشد. این مواد به کاهش فرسودگی سطحی چرخ دنده ها و

cooling system with recirculating flow and supposing that the temperature of oil entering that exchanger is equal to $t_R = 90^\circ\text{C}$ and when leaving it is equal to $t_s = 65^\circ\text{C}$ it is necessary to that such an efficiency is put a side which is equal to

$$q = \frac{(Pr_1 - P't) \times C_{rt} \times 0.07}{t_R - t_s} = \frac{(30 - 18.9) \times 50 \times 0.07}{90 - 65} = 1.6 \text{ l/min}$$

■ Lubrication

The reasons for using oil inside gearbox are as follows:

Reducing friction between parts and increasing their efficiency

Reducing heat and transferring it from moving parts to the case.

Protecting the surfaces against rusting

Reducing noise

Note: industrial gear oil must be used in solar gearbox having the ability to tolerate pressure and rapid heat transfer from inside to outside and have EP additives. These additives help in reducing surface wear of gears and ball bearings.

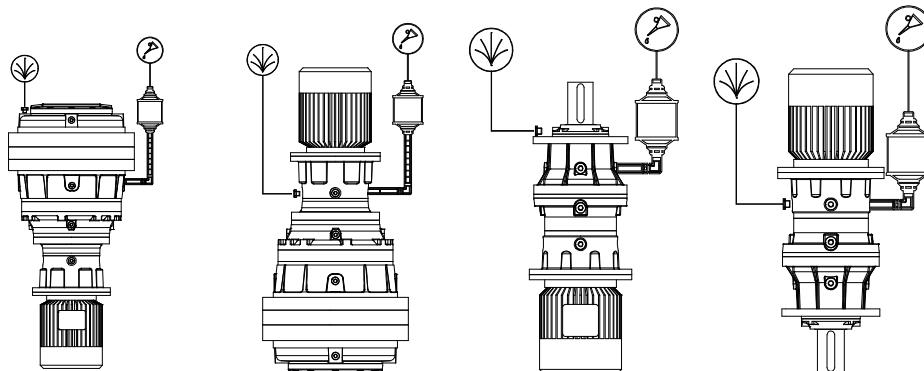
Quality And Technology

اصفهان
دوران‌فراز

بلبرینگ‌ها کمک می‌کند. در واقع، این افزودنی‌ها تحت تاثیر گرما و فشار بین سطوحی که در معرض بار قرار گرفته‌اند، به صورت شیمیایی با سطوح مشابه واکنش نشان می‌دهند و پوشش محافظی ایجاد می‌کنند که از تشکیل ریزجوش‌ها و گرفتگی‌های بعدی جلوگیری می‌کند.

قبل از راه اندازی دستگاه از مقدار مجاز روغن داخل گیربکس اطمینان حاصل شود روغن دستگاه در مرحله اول پس از ۱۰۰ ساعت کارکرد و در مراحل بعدی پس از ۱۰۰۰ ساعت کارکرد باید تعویض گردد.

Actually these additives react chemically with similar surfaces under the effect of heat and pressure between those surfaces which have been exposed to load and provide a protection coating preventing from welding residuals and following clogging. Make sure of permissible amount of oil inside gearbox before starting the machine. Machine oil must be changed after 100 hours working at first step and after 1000 hours working in following steps.


■ گرانروی

گرانروی جنبشی ماده روان کننده باید مطابق با دمای عملیات و سرعت چرخش انتخاب شود. چون ویسکوتوزیته با افزایش دما کاهش می یابد، برای دمایهای عملیاتی بالاتر توصیه می شود روغن با گرانروی بالاتر انتخاب شود. در مورد کاهش بسیار آرام (سرعت ورودی زیر 15min^{-1})، استفاده از روغنی با گرانروی بالا را توصیه می کنیم یا بر عکس در مورد گیربکس کاهنده با سرعت چرخش بالا، استفاده از روغن با گرانروی کم را توصیه می کنیم. قبل از انتخاب روغن به مشخصات روغن در جدول زیر توجه فرمائید

مشخصات فیزیکی - شیمیابی	گرانروی 100°C	شاخص گرانروی	حداقل نقطه اشتغال C°	حداقل نقطه ریزش C°	دانسیته در 15.6°C kg/m^3	قلیانیت کل mg KOH/g	مشخصات فیزیکی - شیمیابی
روش آزمون	ASTM D-445	ASTM D-2270	ASTM D-92	ASTM D-97	ASTM D-1298	ASTM D-2896	روش آزمون
به ران بر دبار	68	95	210	24-	880	ASTM D-2896	به ران بر دبار
به ران بر دبار	100	95	218	21-	885	ASTM D-1298	به ران بر دبار
به ران بر دبار	150	95	234	18-	890	ASTM D-97	به ران بر دبار
به ران بر دبار	220	95	240	15-	895	ASTM D-92	به ران بر دبار
به ران بر دبار	320	95	240	15-	895	ASTM D-2270	به ران بر دبار
به ران بر دبار	460	95	246	9-	900	ASTM D-445	به ران بر دبار

■ مخازن روغن

بدلیل گرمای داخل گیربکس و انساط روغن میتوان از مخازن انساط روغن استفاده کرد. در شکل زیر نحوه قرارگیری این مخازن نشان داده شده است.

■ Viscosity

Fluctuating viscosity of lubricating oil must be selected based on operation temperature and circulation speed. Since viscosity is reduced with temperature increase, it is recommended that oil with higher viscosity is chosen for higher operational temperature. For very mild reduction (inlet speed less than -15min^{-1}) we recommended using an oil with high viscosity or conversely an oil with low viscosity for reducing gear with higher circulation speed. Before selecting oil, notice oil specifications in following table

■ Oil vessels

Oil expansions vessels can be used due to heat inside gearbox and oil expansion. The location of these vessels has been shown in following pictures.